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A recent experiment on the multiferroic BiMn2O5 compound under a strong applied magnetic field revealed
a rich phase diagram driven by the coupling of magnetic and charge �dipolar� degrees of freedom. Based on the
exchange-striction mechanism, we propose here a theoretical model with the intent to capture the interplay of
the spin and dipolar moments in the presence of a magnetic field in BiMn2O5. Experimentally observed
behavior of the dielectric constants, magnetic susceptibility, and the polarization is, for the most part, repro-
duced by our model. The critical behavior observed near the polarization reversal �P=0� point in the phase
diagram is interpreted as arising from the proximity to the critical end point.
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I. INTRODUCTION

Beginning with the pioneering work of Hur et al.,1 a se-
ries of experiments has uncovered remarkable cross correla-
tions of the magnetic and electric dipole �i.e., polarization�
behavior in a class of compounds RMn2O5
�R=Tb,Ho,Dy�.2–4 The coupled behavior of the magnetic
and polarization degrees of freedom is due in large part to a
significant exchange striction in these materials, and to the
presence of geometric frustration in the magnetic exchange
network. The idea of exchange striction as the driving force
of multiferroic behavior in the RMn2O5 compound was first
proposed in Refs. 3 and 5.

A more recent theoretical advance in regard to the
exchange-striction coupling in RMn2O5 includes an effective
theory formulation6 and a group-theoretical analysis.7 A re-
view by Sushkov et al.8 discusses an equation-of-motion
method treating the coupled dynamics of spins and the dipole
moments, which would give rise to the electromagnons ob-
served in RMn2O5 compounds. A key ingredient in the order-
parameter-based theories of RMn2O5 �Refs. 5–7� is the pres-
ence of multiple magnetic order parameters and the
interaction between them through coupling to the atomic dis-
placement in describing the observed ferroelectricity.

Our approach here differs from existing models in that we
aim to construct an explicit microscopic model for RMn2O5.
The same exchange-striction idea underlies both our model
and the models proposed in Refs. 5–7. In particular, we try in
this paper to understand the phase diagram obtained in a
recent high magnetic �H� field study on one member of the
RMn2O5 family, BiMn2O5 �BMO�, which revealed a high-
field phase with critical behaviors of the polarization and the
magnetization at the point where P �bulk polarization� is
tuned through zero.9

The experimental findings for BMO under high magnetic
field, described in detail in Ref. 9, is the following. In the
low-temperature ferroelectric phase of BMO, application of
the magnetic field H along the crystallographic a axis in
excess of 20 T resulted in a sharp increase in the b-axis
dielectric constant, as well as in the slope of a-axis uniform
magnetization dM /dH, as the field strength swept through

the critical value Hc. The temperature �T�-dependent trace
Hc�T� agreed well with the position of P=0 separating the
low-field P�0 from the high-field P�0 region,10 assuming
that the H=0 state had the P�0 polarization to begin with.
Down to the lowest temperature measured at 0.66 K, the P
�0 to P�0 crossover appeared to be smooth with no sign of
a first-order discontinuity. Furthermore, the behavior of P at
0.66 K near H=Hc was shown to agree well with the power-
law �P���H−Hc�1/3, while that of the b-axis dielectric con-
stant was reproduced with �b�H�−�b�H=0���H−Hc�−2/3. A
Ginzburg-Landau scheme was employed to explain the ob-
served power-law behavior.9

As is obvious from the symmetry consideration, a second-
order phase transition at P=0 is ruled out because both sides
of P=0 are already symmetry-broken states. Only a first-
order discontinuity or a crossover is left as a possibility. It
was then conjectured9 that a critical end point with an ex-
tremely low critical temperature T� must exist in this mate-
rial. The observed critical behavior in both P and �b at low
temperature then follows naturally from the proximity to the
putative critical end point, it was claimed.9

Given the novelty of the claim and excitement over the
possible field-induced critical phenomena in a multiferroic
compound, it is desirable to develop a microscopic model
that can capture the essential aspect of the observed dielec-
tric and magnetic behavior of BMO under a high magnetic
field. Other existing models5–8 do not describe the impact of
high magnetic field on the phase diagram, although an exten-
sion to the high-field case may well be possible in other
theories, too. It is also our belief that the coupled dynamics
of dipolar and magnetic moments in BMO under the nonper-
turbative regime of strong magnetic field may be better cap-
tured in a straightforward microscopic model such as
adopted here.

We organize the rest of the paper as follows. In Sec. II,
the complex structure of magnetic Mn networks for BMO is
reduced to a simple, manageable spin model coupled to lat-
tice displacements. The model naturally embodies the ideas
of spin-lattice coupling already proposed for other com-
pounds such as YMn2O5.3 The relation of the frustration in
the magnetic exchange network to the local displacement of
Mn ions is made transparent. Then in Sec. III a thorough

PHYSICAL REVIEW B 79, 104437 �2009�

1098-0121/2009/79�10�/104437�8� ©2009 The American Physical Society104437-1

http://dx.doi.org/10.1103/PhysRevB.79.104437


classical Monte Carlo simulation of our model is carried out,
both justifying the continuous spin-flop model introduced in
Ref. 9 and revealing the power-law behaviors of susceptibili-
ties as in the experiment. The observed exponents agree
fairly well with the experimentally measured values even
though no quantum-mechanical consideration is given in the
present model. The phase diagram for our model is indeed
consistent with the presence of a critical end point. We close
with a summary and outlook in Sec. IV.

II. MODEL

The pronounced feature of the magnetic structure of BMO
is the geometrically frustrated nature of the magnetic inter-
action pathways. The Mn atoms in BMO occur in two vari-
eties: Mn3+ �whose spin is S=2 and is surrounded by an
oxygen tetrahedron� and Mn4+ �spin S=3 /2, surrounded by
an oxygen octahedron�. The large spins of both Mn atoms
allow us to treat them as classical to the first approximation.

The real-space locations of Mn atoms and their exchange
network are presented in Fig. 1. There are eight Mn atoms in
a unit cell with four Mn3+ and four Mn4+ ions each. Three
antiferromagnetic exchange interactions have been identified
in the literature as dominating the magnetic structure.2 The
two adjacent Mn3+ ions �filled circles in Fig. 1� form the
strongest exchange bond with J5. The exchange interaction
involving one Mn3+ and one Mn4+ lying adjacent to it along
the a axis is the next strongest with J4. Magnetic exchange of
Mn3+ with Mn4+ lying along the b axis is given by J3, which
is the weakest. All three J’s are antiferromagnetic. As seen in
Fig. 1, a given Mn3+ spin is exchange coupled to another
Mn3+ spin on one side �J5�, and a pair of Mn4+ spins on the
other �J4�. The two Mn4+ spins interact only weakly, and we
will ignore this weak exchange of Mn4+ spins for the sake of
simplicity. As a result, the two Mn4+ spins behave identically
and there are only six independent spin degrees of freedom

in a unit cell. The approximation to keep only J3, J4, and J5
also makes the system two dimensional.

The six independent spins in a unit cell are coupled to one
another in the manner depicted in Fig. 2, where a zigzag
chain consisting of alternating J5−J4−J4−J5−J4−J4−¯
bonds is shown running along the a axis. An antiferromag-
netic spin configuration is realized for each chain. A weak
antiferromagnetic coupling J3 exists between the chains for a
selection of Mn sites connected by dashed lines in Fig. 2.
The situation is further simplified in the schematic plot of
Fig. 3. Here the geometrically frustrated nature of the Mn
exchange is apparent in the form of a closed loop consisting
of five Mn spins. Because of this unique connectivity, the
interchain interaction cannot be fully satisfied for all J3
bonds. For a particular realization of antiferromagnetic order
on the chains, the interchain antiferromagnetic interaction is
alternatively fully satisfied and fully frustrated as one can see
in the sample spin configuration of Fig. 2. Translating the
spin configuration by one atom for a given chain merely

FIG. 1. �Color online� Network of Mn atoms in BiMn2O5. Filled
and empty atoms are Mn3+�S=2� and Mn4+�S=3 /2�, respectively. A
unit cell containing eight Mn atoms is shown as a cube with its axes
labeled a, b, and c. Four unit cells are shown in the figure. Bars
connecting the atoms have nonzero exchange energies. Exchange
interaction between the two Mn4+ atoms will be ignored; making
the unit cell with six independent spins.

FIG. 2. �Color online� Projection of the Mn network onto the ab
plane with six atoms per unit cell. Thick and thin full lines represent
J5 and J4 bonds, while the green dotted lines are J3 bonds. A sample
spin configuration with R �right� and L �left� pointing spins are
displayed. The J3 bonds alternate between being fully satisfied and
fully frustrated.

FIG. 3. �Color online� A schematic representation of the Mn
network. Thick and thin horizontal links are J5 and J4 bonds. The
interchain bond J3 is shown as dotted lines. Two types of alternating
chains are labeled as A and B. A unit cell contains six spins labeled
1 through 6. The magnetic unit cell is twice as large �shaded re-
gion�. Two kinds of Mn3+ pairs, formed by 2–3 and 5–6 atoms,
exist in a unit cell. In the experiment of Ref. 9, a magnetic field is
applied along the a axis as shown and polarization develops along
the b axis. The spin orientations are antiferromagnetic within a
chain, and point in the direction dictated by the local anisotropy,
which are different for the two chains.
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shifts the locations of the frustrated bonds by one lattice
atom, but fails to relieve the frustration itself. And as a con-
sequence of the frustration, the ground state would possess
2N degeneracy, N being the number of chains.

In BMO as in other RMn2O5 compounds, the frustration
is relieved through the spin-lattice interaction. For a given
Mn3+ pair �a pair of adjacent Mn3+ ions�, one Mn3+ spin is
favorably exchange coupled �antiparallel spins� with the
Mn4+ spin connected to it, but the other Mn3+ spin must be
unfavorably coupled �parallel spins� with its neighboring
Mn4+ spin. Then the Mn3+ pair as a whole moves in the
direction that strengthens the favorable bond. The relative
positions of the Mn3+ ions within a pair are assumed to re-
main rigid during the displacement, while the center of mass
of the pair is allowed to move. If all Mn3+ pairs are displaced
in the same direction, one has a net polarization and a ferro-
electric state. There are two types of Mn3+ pairs in a unit cell,
namely, 2–3 and 5–6 pairs in Fig. 3. Although their move-
ments are not strictly along the b axis in the real compound,
it is also known that the a component of the displacements
cancels out between the two Mn3+ pairs, leaving only the b
component to manifest itself in net polarization.2 In this re-
gard, BMO behaves as a uniaxial ferroelectric.

The unit cell contains six independent spin sites labeled 1
through 6 in Fig. 3. The spin-spin interaction energies within
the chain �E1� and between the chains �E2� read, respectively,

E1 = J5�
i

�Si2 · Si3 + Si5 · Si6�

+ J4�
i

�Si1 · Si2 + Si4 · Si5 + Si3 · Si+x̂,1 + Si4 · Si+x̂,6� ,

E2 = J3�
i

�Si1 · Si6 + Si2 · Si4 + Si4 · Si+ŷ,3 + Si5 · Si+ŷ,1� ,

�2.1�

repeated over all unit-cell index i. Adjacent cells along the a
and b axes are labeled i� x̂ and i� ŷ, respectively.

The spin-lattice interaction ties the displacement of the
Mn3+ pairs, or the local dipole moment, with the Mn spin
configurations. Each unit cell i contains two Mn3+ pairs. The
displacement of the 2–3 and 5–6 pairs along the b axis, la-
beled as di and ui, is subject to the force generated through

exchange striction. There is also a potential-energy increase
associated with the displacements that, up to fourth order,
can be written as �i�ui

2+di
2� /2�+ �� /4��i�ui

4+di
4�, where �

plays the role of bare dielectric susceptibility and � is the
interaction strength. With the suitable redefinition of �, ui, di,
and �, one can define the strength of the spin-lattice coupling
to be one, and arrive at the spin-lattice interaction energy,

E3 =
1

2�
�

i

�di
2 + ui

2� +
1

4
��

i

�di
4 + ui

4�

− �
i

di�Si3 · Si−ŷ,4 − Si2 · Si4�

− �
i

ui�Si1 · Si6 − Si5 · Si+ŷ,1� . �2.2�

The last two lines express the exchange-striction effects. Be-
cause of the rescaling, we can regard � as both the bare
dielectric susceptibility and the spin-lattice coupling
strength.

To the above energies one adds the single-ion anisotropy
contribution

FIG. 4. �Color online� Schematic H-T phase diagram of the
model Eq. �2.5� for �a� weak, �b� moderate, and �c� strong spin-
lattice coupling �. The dashed and full lines separating the P�0
from P�0 ferroelectric �FE� region are crossover and first-order
transition lines, respectively, and the dark square in �b� is the critical
end point. The scenario �b� is most consistent with known facts
about BMO.
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FIG. 5. �Color online� �a� Polarization P and �b� uniform a-axis
magnetization M as a function of magnetic field H at various tem-
peratures T. The critical end point occurs between T=0.1 and T
=0.2.
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E4 = − I�
i

�
�=1

3

�Si� · n̂A�2 − I�
i

�
�=4

6

�Si� · n̂B�2. �2.3�

The local anisotropy axes n̂A and n̂B are assumed different
for the A and B chains. Finally, one adds the Zeeman energy

E5 = − H�
i

�
�=1

6

Si� · x̂ . �2.4�

The total energy governing the behavior of spins and dis-
placements in BMO reads

E = E1 + E2 + E3 + E4 + E5. �2.5�

This is the proposed “minimal model” for BMO. In Sec. III
we do a classical Monte Carlo simulation of this energy
form.

The bulk polarization P is due to the net displacement of
the Mn3+ pairs,

P � �
i

�ui + di� . �2.6�

If we can ignore the quartic interactions in ui and di, the
dependence of the local displacements ui and di on the sur-
rounding spin configuration can be worked out exactly, and
gives the polarization

P 	 �
i

�Si3 · Si−ŷ,4 − Si2 · Si4� + �
i

�Si1 · Si6 − Si5 · Si+ŷ,1� .

�2.7�

Before closing this section it is important to emphasize
that the present model is purely classical in its nature. A
proper quantum analog will be worked out in the future.

III. MONTE CARLO CALCULATION

An antiferromagnet with the magnetic field applied along
the direction of the single-ion anisotropy undergoes a spin-
flop process at the critical field Hc=�JI, where J and I are
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FIG. 6. �Color online� �a� Dielectric susceptibility �P and �b�
uniform magnetic susceptibility �M as functions of magnetic field H
and temperature T. The peak occurs near where P=0. The peak
height rises upon lowering the temperature. The lowest-temperature
peak at T=0.1 �just below T�� is smaller than the peak at T=0.2
�just above T��. The second set of peaks at higher magnetic fields
are due to the ferro- to paraelectric transition.
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FIG. 7. �Color online� Polarization P and dielectric susceptibil-
ity �P as functions of magnetic field H at temperature T=0.2. The
dotted lines represent the power-law behaviors �P�	 �H−Hc��� and
�P	 �H−Hc�−�� with the critical field Hc /J3=26.92 and the expo-
nents ��=1 /3, ��=2 /3. The errors are at most twice as large as the
symbol.
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the exchange and local anisotropy energies, respectively. If
the field direction is not aligned with the anisotropy direc-
tion, the spin flop occurs instead in a continuous manner as
the spins gradually rotate with H. Such a continuous spin
flop can occur in BMO because the local anisotropy direc-
tions n̂A and n̂B are not strictly parallel to the a axis, the
direction of the applied field, but are off by �8°.9 The
unique feature of BMO that follows from the different aniso-
tropy directions of the two types of chains �A and B in Fig. 3�
is that the spins on the two chains can rotate in the opposite
directions with increasing H. If indeed one set of chains has
its spins rotate counterclockwise and the other set clockwise,
the once antiparallel pair of spins becomes parallel and the
parallel spins antiparallel at sufficiently large field strength,
and due to a relation such as Eq. �2.7�, the polarization di-
rection will get reversed. The salient features of the high-
field experiment on BMO �Ref. 9� are summarized here to
facilitate the comparison with the Monte Carlo results.

�i� The bulk polarization P along the b axis reverses its
direction at a critical field H=Hc applied along the a axis.
Near P=0 and at the lowest measured temperature T
=0.66 K, the field dependence of P is consistent with �P�
��H−Hc�1/3.

�ii� The b-axis dielectric constant �b shows a pronounced
peak as H is tuned through Hc. The behavior at T=0.66 K is
consistent with �b�H�−�b�H=0���H−Hc�−2/3.

�iii� The a-axis magnetic susceptibility also shows a peak
at H=Hc.

�iv� The temperature dependence of �b�T� with the field
value fixed at H�Hc follows a non-Curie-Weiss form,
known as Barrett’s formula.11

The full lattice model of Eq. �2.5� was treated within the
classical Monte Carlo scheme to see if the above-mentioned
features of the experiments can be captured within our
model. Aided by the experimental input, we consider the

planar spins confined in the ab plane, and work with the
two-dimensional lattice disregarding the coupling along the c
axis. A lattice of Lx
Ly unit cells, each unit cell consisting
of six Mn sites, is considered. We choose the field directed
along the a axis as in the experiment,9 and let H vary from 0
to +Hmax for each fixed temperature. The calculation was
then repeated for many different temperatures. Hmax is cho-
sen in such a way that P evaluated from Eq. �2.6� or �2.7�
vanishes before �H�=Hmax is reached. Such a field-induced
paraelectric transition was continuous, and occurred before
the full polarization of spins due to the strong Zeeman field
could take place.

A difficulty with the present simulation is the lack of in-
formation about the parameter values such as J3 through J5
and spin-lattice coupling strength �. Initially, we worked
with several different sets of parameters and later identified
the ones which best reproduce the experimental facts. In the
course of the general search, we realized that three distinct
behaviors �Fig. 4� are possible for the P�0 to P�0 cross-
over: �a� with a sufficiently weak �, the entire P=0 line
becomes a crossover without a discontinuous jump in P at
any temperature. �b� The intermediate range of � gives the
P=0 curve that begins as a first-order critical line at low
temperature but terminates at a finite temperature, T�, as a
critical end point. The higher-temperature part of the curve
becomes a crossover. �c� For a sufficiently strong spin-lattice
coupling �, the entire P=0 line is a first-order transition that
merges with the second-order paraelectric transition line at
high temperature. It is the behavior near the critical end point
in scenario �b� that is most relevant for BMO. The Monte
Carlo results discussed below are for the parameters that give
rise to the scenario �b�: J4 /J3=J5 /J3=20, � /J3=3, I /J3=9,
and �=0. The anisotropy angles �A and �B, defined by
n̂A · x̂=cos �A, n̂B · x̂=cos �B, are chosen as �A=−�B=30°. The
exaggerated anisotropy angle �experimental values are �8°�
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FIG. 8. �Color online� Dielectric susceptibility �P �in arbitrary units� as a function of temperature T for various fields. The lines are best

fits to Barrett’s formula with the two temperature scales T0 and T1 as fitting parameters.
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is a consequence of searching for a parameter set that can
produce the critical end-point temperature T� at a sufficiently
low temperature, well below the paraelectric transition.

All calculations were performed on the lattice size Lx
=Ly =16 with the periodic boundary conditions in both direc-
tions. A standard Metropolis update scheme was used. Due to
the complexity of the model, some care was needed in imple-
menting the Monte Carlo program. First, a “typical” configu-
ration at each temperature T for zero field was obtained by
means of the simulated annealing method. Then, beginning
with the zero-field configuration thus obtained, we increase
H to compute physical quantities as functions of T and H. At
each temperature and field, at least 2
104 Monte Carlo
steps per spin and displacement were made, and typically 4

103 steps were discarded for equilibration. Near the critical
region, more steps of up to 5
105 were required for suffi-
cient equilibration and ensemble averages. Throughout the
paper we denote energy, temperature, and field in units of J3.

For a given instantaneous configuration, we compute the
magnetization per spin along the field,

M �
1

6LxLy
�

i
�
�=1

6

Si� · x̂ , �3.1�

and the polarization per unit cell,

P �
1

LxLy

1

J3
�

i

�ui + di� . �3.2�

The average polarization P and magnetization M are then
calculated by

P = 	P
, M = 	M
 , �3.3�

where 	¯
 indicates the ensemble average. We can also
compute the dielectric ��P� and magnetic ��M� susceptibili-
ties as

�P =
LxLy

T/J3
�	P2
 − 	P
2� ,

�M =
6LxLy

T/J3
�	M2
 − 	M
2� . �3.4�

Varying the parameters within the scenario �b� of Fig. 4 only
gave rise to minor quantitative differences without altering
the main results described below. The reduction of ��A�
= ��B�, for instance, resulted in the overall increase of �P� and
enhanced T�. The introduction of nonzero � only reduces �P�.
For these reasons we believe the results presented in the
following represent the general features near the critical end
point in scenario �b�.

In Fig. 5 the polarization P is plotted against H for vari-
ous temperatures. The behavior at T=0.1 showed a jump
from P�0 to P�0 as in a first-order transition. The corre-
sponding a-axis magnetization also undergoes a sudden in-
crease at H=Hc. For T�0.2, both M and P evolve continu-
ously with a sharp slope at H=Hc. The critical-field position
Hc itself depends smoothly on the temperature. We note that
Hc deduced as the location of P=0 in the P vs H plot is
numerically slightly different from the positions of the maxi-

mum susceptibilities. The same difference also shows up in
the experiment,9 but we do not have a good reason to believe
that the small discrepancy has any physical importance.

The susceptibilities �P and �M from Eq. �3.4� are shown
in Fig. 6. Clear peaks in both quantities were found as H
crosses Hc, and the heights of both peaks increased upon
approaching T� from above. Both are expected to diverge at
the critical end point �H� ,T��. The peaks grew smaller at T
=0.1, which lies below T�. In the experiment both suscepti-
bilities reached maximum peak heights at �5 K and de-
creased below it. On the other hand, no sign of a first-order
transition was found for temperatures below 5 K, and no sign
of divergent susceptibilities at or near 5 K. Hence it is incor-
rect to conclude that �5 K corresponds to T� in the experi-
ment. Rather, the genuine first-order transition should take
place, if at all, below the currently available temperature of
0.66 K. It may be that the decrease in the susceptibility that
begins with 5 K is a quantum effect such as the presence of
a localized phonon of finite energy.

The polarization P and dielectric susceptibility �P at T
=0.2 �just above T�� and in the vicinity of H=Hc are further
analyzed in Fig. 7. Displayed on a log-log plot, the data are
consistent with the power-law exponents ��=1 /3 and ��
=2 /3, the same exponents used to fit the experimentally ob-
served behavior of P and �b at T=0.66 K. A Ginzburg-
Landau argument predicting the same exponents can be
found in Ref. 9.

The quantum nature of the displacive phonon mode is
reflected in the modification of the Curie-Weiss behavior of
the dielectric susceptibility to the one described by Barrett’s
formula,11

�P�T� =
M

�T1/2�coth�T1/2T� − T0
. �3.5�

It was shown that the experimental data for �b�T� fit well to
the above formula.9 In Fig. 8, we attempted to fit several
curves of �P versus T to the same formula in the vicinity of
Hc�T=0� /J3�27.0, the critical-field value at zero tempera-
ture. For H�Hc�0� �lower panel�, it is apparent that Barrett’s
formula does not describe the curves very well. For H
�Hc�0� �upper panel�, the curves seem to fit reasonably well
to the formula, only if we allow for negative values of T0
although T0 should play the role of the critical temperature of
the ferroelectric transition and remain positive. In contrast,
the fit to the experimental data was made with positive T0 in
Ref. 9. Overall, we do not find good agreement of our Monte
Carlo data for �P to Barrett’s formula. A Curie-Weiss fit to
the high-temperature side of the data also resulted in nega-
tive T0. To achieve improved agreement between theory and
experiment in this regard, we believe it is essential to con-
sider the quantum-mechanical nature of the phonon modes ui
and di.

IV. SUMMARY AND OUTLOOK

In this paper, we proposed a minimal model of the
magnetic-field-induced critical end point recently observed
in BiMn2O5. A classical energy involving the lattice and spin
degrees of freedom and their coupling was written down in
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Eq. �2.5� and its properties analyzed with the Monte Carlo
method. Our findings are summarized below. The readers
will find it useful to compare the following set of results with
the summary of the experimental facts given at the beginning
of Sec. III.

�i� The bulk polarization P along the b axis did reverse its
direction at a critical field H=Hc applied along the a axis.
The spins on the A and B chains rotated continuously, and in
the opposite directions, under the increasing field. Near P
=0, and at T slightly above T�, the field dependence of P was
found to be in reasonable agreement with the power-law be-
havior, �P���H−Hc�1/3.

�ii� The b-axis dielectric susceptibility �P shows a pro-
nounced peak as H is tuned through Hc. The behavior at low
temperature just above T� is consistent with �P��H
−Hc�−2/3.

�iii� The a-axis magnetic susceptibility also shows a peak
at H=Hc, which reaches a maximum value at T�.

�iv� The temperature dependence of �P�T� at a fixed field
H�Hc is generally inconsistent with Barrett’s formula.11

The experimentally observed �P�T� agreed better with Bar-
rett’s formula.

In conclusion, the magnetic-field dependence of the polar-
ization, and magnetic and dielectric susceptibilities obtained
from our model, proved to capture most of the features of the
experiment. The simultaneous rise in the dielectric and mag-
netic susceptibilities in the continuous spin-flop regime
emerges naturally from our model. Other features such as the
temperature dependence of the dielectric susceptibility do
not agree well with the experimental results. The height of
the susceptibility peaks reaches a maximum at T� in our
theory since that is where the expected divergence should
take place, but, experimentally, the peak heights reach a
maximum at �5 K without showing signs of a first-order
transition below that temperature. These discrepancies call
for a refinement of the present model that should include,
among other things, the quantum nature of the displacive
phonon modes expressed as di and ui in Eq. �2.5� and the
quantum dynamics of the spins. To what extent the quantum
correction will alter the low-temperature behavior of the
classical result remains to be explored. It is encouraging, on
the other hand, that a simple classical model such as we
propose already captures many of the prominent features of
the experiment.

Field dependence of the polarization and its reversal in
the high-field regime in the RMn2O5 family with R
=Y,Er,Eu,Gd, but not Bi, was reported in a series of papers
published a few years earlier.12 The behavior of P under
magnetic field in other rare-earth compounds seems more
complex than that observed for BiMn2O5. The systematic
correlation of the polarization reversal with the divergent be-
havior of the magnetic and dielectric susceptibilities had not
been noted previously.

First-principles calculation already exists for the RMn2O5
family with R=Tb,13 and R=Dy,14 but none as yet for R
=Bi. In view of the high-field phase diagram obtained in
BiMn2O5 recently, it will be clearly very interesting to have
the density-functional calculation carried out in this com-
pound as well. Finally, other members of the RMn2O5 family
should to a certain extent be subject to the similar micro-
scopic Hamiltonian as the one proposed here for BiMn2O5
and might possibly exhibit a high-field behavior similar to
those found in Ref. 9. On the other hand, the existence of a
critical end point in a given compound depends in a subtle
manner on the choice of material parameters which could
lead to different types of phase boundaries separating the P
�0 and the P�0 regions as shown in Fig. 4.

A key assumption of our work is that the shift of Mn3+

ions alone can account for the ferroelectric polarization. To
be fair, the calculation of Ref. 13 reports the shift of oxygen
positions as well as those of Mn3+ in the ferroelectric regime.
An x-ray structural analysis by Noda et al.15 revealed the
shift of Mn4+ and oxygen positions. However, both these
works are for other RMn2O5 compounds, and the extent of
connection of their work to BiMn2O5 remains to be clarified.
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